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Postoperative rehabilitation of anterior cruciate ligament (ACL) reconstruction mainly 
focuses on the restoration of strength and range of motion with a long-term goal to 
return athletes to their prior level of activity. Of those wanting to return to sport, many 
are either unable and/or experience protracted recovery despite extensive rehabilitation. 
To holistically care for patients recovering from ACL reconstructions, reframing 
rehabilitation to consider a comprehensive systems approach (including musculoskeletal, 
cardiovascular, endocrine, and neurologic systems) may help improve treatment 
outcomes. The American Physical Therapy Association has adopted a vision statement 
that embraces the concept of a ‘movement system,’ but validation of the movement 
system has been challenging. Application of a multi-physiologic systems approach may 
provide a unique perspective to better understand the nervous system and its interactions 
after ACL reconstruction. The purpose is to focus on the nervous system contributions to 
a multi-physiologic system approach to rehabilitation from ACL reconstruction. 

Level of Evidence 
5 

INTRODUCTION 

Following anterior cruciate ligament reconstruction 
(ACLR), many athletes experience suboptimal outcomes in-
cluding low rates of returning to sports, high rates of rein-
jury (graft and contralateral ACL ruptures), and early onset 
post-traumatic osteoarthritis.1,2 Traditionally, rehabilita-
tion from ACLR focuses on restoring the musculoskeletal 
system to its pre-injured state3 (i.e., normalize strength, 
range of motion, biomechanics, etc.) with little targeted re-
covery of the neurophysiologic consequences of both the 
peripheral (PNS) and central nervous systems (CNS), cou-
pled with the psychological contributions to physical recov-
ery. 

ACL injuries most commonly occur in strategy sports4,5 

(i.e., soccer, basketball), that require high-velocity cutting, 
pivoting and deceleration.6 These high-speed sports require 

not only physical quickness, but also quick sensory inte-
gration and cognitive processing of the environment (i.e., 
sports balls, opponents, teammates) likely resulting in 
movement prediction errors. Feedforward (anticipatory/
prediction) and feedback (reactive) loops of the nervous 
system allow an athlete to navigate and demonstrate suc-
cess within these highly chaotic environments.7,8 For move-
ment, the nervous system makes predictions based on pre-
vious experiences, then uses feedback (and error) from the 
movements to update future movement plans.9 The ner-
vous system is a highly sophisticated and a crucial contribu-
tor to goal oriented, efficient movement during athletic ac-
tivities. 

As an effort by the American Physical Therapy Associa-
tion (APTA) to establish the profession’s identity, the adop-
tion of a new vision statement in 2013 called for physical 
therapists to ‘transform society by optimizing movement 
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to improve the human experience.’10 From this, the human 
movement system was promoted as an effort to further es-
tablish professional identity. The movement system has 
been described by the APTA as being comprised of a collec-
tion of body systems including the nervous, musculoskele-
tal, endocrine, cardiopulmonary, and integumentary sys-
tems.11 In many ways, the integration of the body systems 
described in the movement system approach11 to rehabili-
tation integrates similar elements of a common theoretical 
model in motor learning, the dynamical systems theory.12 

The dynamical systems theory is a well adopted framework 
pertaining to movement development, motor control, and 
skill acquisition which aims to explain variability in human 
goal-directed movement.12 Dynamical systems theory is a 
conceptual framework that builds understanding of a com-
plex system (human movement) through individual compo-
nent parts.12 The interaction and collaboration of compo-
nent systems is what drives the success of the entire system, 
which is similarly described in the APTA movement system 
framework. This commentary provides a perspective where 
each physiologic system can be thought of as a compo-
nent system necessary to efficiently optimize human move-
ment. The purpose of this commentary is to focus on the 
nervous system contributions to a multi-physiologic system 
approach to rehabilitation from ACLR. 

NERVOUS SYSTEM CONSEQUENCES 
ASSOCIATED WITH ACL INJURY AND 
RECONSTRUCTION 

Models describing the neurophysiologic consequences to 
the sensorimotor system after ACL injury have previously 
been developed.13,14 In short, these models provide a 
framework outlining the impact of ACL rupture (i.e., 
mechanoreceptor instability, joint instability, and pain) on 
central nervous system (CNS) reorganization. CNS reorga-
nization due to an afferent disruption (ligament rupture) 
leads to changes in efferent output to muscles, impacts re-
flexes, and involves voluntary and involuntary movement 
strategies.13,14 Common clinical manifestations of altered 
sensorimotor processing include altered knee mechanics 
during squatting, running, jumping, and hopping.15 Previ-
ous authors have aimed to better understand the cortical 
contributions to altered sensorimotor processing, poten-
tially predisposing individuals to ACL injury risk16 as well 
as protracted recovery following ACLR.17,18 Research tools 
such as neuroimaging (functional magnetic resonance 
imaging [fMRI]) and transcranial magnetic stimulation 
(TMS) are commonly used to determine whole brain and 
motor cortex alterations respectively, after ACLR. Changes 
within the spinal cord are commonly measured using the 
Hoffmann Reflex (H-Reflex) which assesses the integrity of 
Ia afferent synaptic transmission contributing to the alpha 
motor neuron pool of the quadriceps within the anterior 
horn of the spinal cord.19,20 

THE WHOLE-BRAIN & COGNITION 

On two occasions, Diekfuss et al.16,21 have demonstrated 
prospectively that athletes who sustain ACL injuries have 

altered cortical connectivity via fMRI between regions re-
sponsible for sensorimotor processing and error correction 
compared to healthy athletes. This literature begins to sug-
gest that a neural biomarker may exist for those at risk for 
sustaining an ACL injury.16,21 After ACLR, fMRI analyses re-
vealed that individuals demonstrate greater levels of neural 
activity in regions responsible for cognition, visual-spatial 
sensory integration, and motor and somatosensory ar-
eas.17,18,22 Furthermore, metrics of corticospinal tract con-
tributions to quadriceps function have been evaluated with 
TMS and demonstrate lingering alterations bilaterally after 
ACLR.19,20 Thus, despite rehabilitation efforts, both whole 
brain and efferent drive to the quadriceps may be altered. 

More recently, researchers have aimed to evaluate if neu-
rocognitive processing (i.e., reaction time, processing 
speed, and visual-spatial memory) during computerized as-
sessments is related to lower extremity injury risk and in-
jury risk biomechanics. Healthy individuals with lower neu-
rocognitive performance have been shown to demonstrate 
injury-risk biomechanics in jumping and cutting tasks.23,24 

Additionally, lower baseline neurocognitive performance 
has been retrospectively associated with increased risk of 
ACL injury occurrence.25 Although continued evidence is 
needed to understand the relationships between various 
neurocognitive processes and lower extremity injury risk, 
the available evidence warrants consideration for integra-
tion of neurocognitive interventions to rehabilitation from 
lower extremity musculoskeletal injury.26 

Although computerized assessments of neurocognitive 
function demonstrate merit in identifying injury-risk, they 
might not be readily available in all clinical settings. In-
stead, dual-task paradigms (the simultaneous completion 
of two tasks) are commonly used to assess attentional re-
source allocation during cognitive-motor tasks27 and have 
been examined in those with ACL deficiency and after 
ACLR.28,29 Attentional resource allocation during cogni-
tive-motor task selection is important, as task difficulty and 
novelty seem to elicit performance deficits during dual-task 
assessments according to age30 and may present during 
more challenging31 compared to easier32 tasks in those fol-
lowing ACLR. Motor tasks involving various metrics of pos-
tural control and gait overlayed with cognitive tasks (au-
ditory or working memory) are the most used metrics for 
evaluating dual-task performance in individuals with ACLR 
and ACL-deficiency.31–34 More recently, sport-specific mo-
tor tasks that are clinician-friendly, such as the tuck jump 
assessment, have shown deteriorating movement quality 
with the addition of a cognitive task in healthy individu-
als.35 Thus, dual-task paradigms may offer a potential fu-
ture direction for clinically evaluating efficiency of cogni-
tive-motor interplay after ACLR.36,37 Interventions 
leveraging cognitive-motor dual-task challenges may im-
prove ecological utility of rehabilitation interventions and 
may provide a potential avenue of future research in ACL 
injury prevention.38 

THE SPINAL CORD & PERIPHERAL NERVOUS SYSTEM 

The spinal cord contributes to the recovery of quadriceps 
muscle activation, especially in the early phases after 
ACLR.19 Greater deficits in quadriceps H-reflex are seen 
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acutely post operatively, but as time from surgery increases, 
deficits in spinal reflex excitability decrease relative to 
healthy individuals.39 In fact, evidence supports that at late 
timeframes (>24months) post-reconstruction spinal reflex 
excitability is potentially increased.20 Therefore, the litera-
ture suggests that prolonged quadriceps activation deficits 
are mediated by the supraspinal level (corticospinal tract 
excitability) in the chronic stages of injury recovery.19,20 

Ia afferent contributions to quadriceps activation deficits 
are difficult to quantify clinically, as they require expensive 
equipment (recording and stimulating electrodes, stimula-
tor), time, and expertise to complete and interpret.40 The 
spinal cord with integration from cortical/subcortical re-
gions is also critical for proprioception, pain (at rest), and 
vibration pain thresholds which continue to be impaired 
years after ACLR.41 Future research is required to under-
stand the neurophysiologic contributions of each sub-sys-
tem to overall recovery from ACLR and develop targeted in-
terventions. 

After ACL injury, alterations within the PNS secondary 
to afferent disruption manifests as diminished propriocep-
tive and balance control.42–44 Whenever sensory input is 
disrupted, spinal reflexes (e.g. H-reflex),39 vestibular re-
sponses (e.g. balance, proprioception),45 and motor re-
sponses (e.g. strength, speed, and power),46 are altered due 
to impaired/inhibitory afferent input. Originally the patho-
physiology of poor dynamic control of the knee with dimin-
ished single-leg balance were attributed to the loss of ACL 
proprioceptive feedback, capsular disruption after surgery, 
and edema.45 However, Krogsgaard et al.47 found that the 
reconstructed ACL graft required higher sensory stimula-
tion than the native posterior cruciate ligament to elicit an 
inhibitory (afferent) muscular reflex response eight or more 
months after the ACLR, identifying that the ACL graft does 
not fully reinnervate after reconstruction.47 Furthermore, 
Bonfim et al.45 found individuals after ACLR had increased 
anterior-posterior and medial-lateral sway that improved 
with heightened sensory input (light touch to a bar), as 
compared to the healthy cohort.45 Thus, the somatosensory 
deficit that occurs from ACL disruption appear to have neg-
ative consequences to both proprioception and balance long 
after ACLR surgery. Rehabilitation should aim to upweight 
the somatosensory system to promote restoration of affer-
ent function. Over time, feedback loops like the H-reflex48 

and some metrics of single-leg static balance improve.49,50 

However, there continue to be alterations in afferent feed-
back and nervous system responses that cause poor biome-
chanical control during dynamic tasks such as jumping or 
cutting.39 

In addition to ACL mechanoreceptor disruption from the 
ligament rupture, skin sensory organs are also impaired 
secondary to surgical reconstruction. Pacinian corpuscles 
and Ruffini endings within the skin are thought to con-
tribute to proprioception51 and pain responses. It has been 
assumed these sensory afferents from Pacinian corpuscles 
and Ruffini endings associated with light touch normalize 
within a month52,53 following reconstruction. However, if 
superficial skin sensation, pain, and sense of position are 
impaired long-term, they will likely alter somatosensory 
(afferent) input and influence CNS, interneuron, and pain-
response pathways. 

PSYCHOSOCIAL CONSIDERATIONS AND PAIN 

While the biomechanical and biological factors for consid-
eration after ACLR are of utmost importance, the psychoso-
cial factors cannot be overlooked. The biopsychosocial 
model has continued to grow in acceptance among health 
care providers through the years since its introduction by 
Dr. George Engel.54–57 As understanding of the interplay 
between the biological, psychological, and social mecha-
nisms continues to evolve, it is undeniable that each of 
these factors plays a significant role in recovery from ACLR. 
The biomedical deficit of a torn ACL and subsequent recon-
struction are universal in all patients that present to reha-
bilitation after ACLR, however, the psychosocial aspects of 
each individual’s recovery are diverse. The literature sur-
rounding the psychosocial factors impacting recovery from 
ACLR is growing.58,59 A large body of evidence in other pop-
ulations, such as those with whiplash syndrome or chronic 
low back pain, exists that may help inform clinicians in 
understanding the psychosocial aspects of injury recov-
ery.60–65 Wiese-Bjornstal’s biopsychosocial sport injury 
risk profile serves as a framework representing the various 
internal (biological and psychological) and external (phys-
ical and sociocultural) factors contributing to injury recov-
ery.65 Utilizing the sport injury risk profile promotes con-
sideration for the sociocultural influences (i.e., coach/team 
RTS time expectations), mixed psychological states (i.e., 
fear of reinjury), and acknowledgement of shifted athlete 
goals throughout the recovery process. Biologically, an ath-
lete’s musculoskeletal, cardiopulmonary, integumentary 
and nervous system have been altered. The athlete must 
also process the confounding neurocognitive and environ-
mental components of RTS (i.e., weather, fan/opponent re-
actions, altered decision making in sport). It is well es-
tablished that neurocognition and emotions can influence 
adherence to rehabilitation programs.66 Adherence is a cru-
cial component to successful recovery. With that in mind, 
clinicians should consider the multitude of psychosocial 
factors the athlete with ACLR must navigate during the 
rehabilitation process in order to maximize rehabilitation 
outcomes. 

The current understanding of pain has advanced signif-
icantly in the last couple of decades, which has led to 
changes in pain assessment methodology.67 Historically, 
pain rating scales have been used clinically as a measure of 
intensity, but are also viewed by some clinicians to be asso-
ciated with the amount of tissue damage. It is now under-
stood that pain rating scores are poor indicators of tissue 
health, especially as pain persists.67–69 However, utilization 
of pain rating scores,70 such as the numeric rating scale 
(0=no pain, 10=worst imaginable pain), still hold clinical 
value. Pain rating scores allow patients to express their pain 
and for the clinician to demonstrate compassion for the pa-
tient and their pain experience. During the rehab process, 
pain rating scores can provide a marker to acknowledge that 
some pain increase is normal and safe and a means to de-
velop a patient-centered agreement on an acceptable pain 
experience. 

Newer scales, such as the PROMIS Pain Interference 
Scale,71 may have utility with patients who are experienc-
ing pain that is interfering with daily and functional ac-
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tivities.72 This scale provides a self-reported measure of 
the consequences of pain on relevant aspects of the pa-
tient’s life. The Pain Interference Scale comes in a computer 
adapted testing format or short-form versions with four, six, 
and eight Likert questions. Because of the normative data 
collected, a representative T-score can be calculated to pro-
vide a standardized score with a mean of 50 and a standard 
deviation of 10. Other measures to assess catastrophizing 
(Pain Catastrophizing Score),73 kinesiophobia (Tampa Scale 
for Kinesiophobia)74 or sensitization (Central Sensitization 
Inventory),75 may be beneficial for patients experiencing 
ongoing pain and poor recovery to assess more complex 
constructs of the patient’s pain experience. Each self-re-
ported outcome measure is best if chosen individually based 
upon a specific patient’s presentation and not applied uni-
versally to all patients. 

MULTI-PHYSIOLOGIC SYSTEM INTERVENTIONS 
FOR THE NERVOUS SYSTEM AFTER ACLR 

A major challenge clinicians face in clinical practice is con-
currently addressing alternations in the nervous system af-
ter ACLR while simultaneously addressing deficits in the 
musculoskeletal, cardiopulmonary, and other systems. 
Thus, the purpose of this section is to provide explanations, 
interventions and rationale for integrating targeted nervous 
system interventions into rehabilitation post-ACLR within 
the context of a multi-physiologic systems approach to hu-
man movement. 

NERVOUS SYSTEM INTEGRATION WITH THE 
MUSCULOSKELETAL SYSTEM 

Immediate priorities in rehabilitation from ACLR consist of 
limiting knee joint effusion, pain and restoring full exten-
sion range of motion and quadriceps muscle function. A 
cascade effect exists where joint injury and effusion results 
in quadriceps arthrogenic muscle inhibition,76 making it 
difficult to achieve and maintain active end-range knee ex-
tension motor control.77 Therefore, it is standard of care to 
provide neuromuscular electrical stimulation (NMES) for at 
least six-weeks after ACLR to optimize recovery of quadri-
ceps function.3 Other modalities such as sensory transcu-
taneous electrical nerve stimulation (TENS) and focal knee 
joint cooling promote improved quadriceps function for a 
therapeutic window of targeted intervention.78,79 More re-
cently, improving quadriceps muscle strength utilizing 
cross-training80 and eccentric exercise81 has also demon-
strated effectiveness. 

Motor control dysfunctions after ACLR are likely present 
immediately post-operatively but become more apparent in 
the intermediate stages of recovery, manifesting as a bio-
mechanical tendency toward limb stiffness with decreased 
hip and knee flexion on the involved limb upon landing dur-
ing single-limb hopping tasks.82 Additionally, trunk lean, 
hip drop, and dynamic valgus are biomechanically faulty 
positions that place the ACL in a position of excessive 
torque (force), load, and tension.83,84 As a result, rehabil-
itation interventions focus to restore biomechanical sym-
metry and often excessively raise the patient’s self-aware-

ness of their lower limb position for all tasks (i.e., internal 
focus of attention). Growing evidence in motor learning in-
dicates that for learning a goal-oriented skill, an internal 
focus of attention may be less optimal than an external fo-
cus of attention, in which the patient’s attention is directed 
toward the environment and actionable goal.15,85 For strat-
egy sports, which comprise the majority of ACL injuries, 
promoting an external focus of attention in rehabilitation 
more closely mimics both the sport environment and as-
sociated neurocognitive demands. An external focus of at-
tention and neurocognitive challenges can easily be im-
plemented throughout the rehabilitation continuum.86,87 

Neurocognitive interventions aim to challenge cognitive 
processes such as working memory, decision making, and 
response inhibition, which are a common requirement of 
team-based sports. In the early phases of rehabilitation 
through late stages and return to sport, incorporating in-
terventions that challenge neurocognitive processing is at-
tainable with little added time and resources (Table 1).88,89 

Table 1 presents examples of internal and external inter-
vention classes as well as clinical intervention examples 
with progression of both the motor and cognitive skills. The 
internal class consists of interventions that aim to manipu-
late the patient’s attentional focus and neurocognitive pro-
cessing, whereas the external class are examples to manip-
ulate the task or environment. Although motor learning, 
cognitive-motor, and visual-motor intervention categories 
are often displayed independently, it is essential to note the 
overlap in utility between them. 

Acutely after ACLR, regaining standing balance control is 
one of the first interventions implemented to restore pos-
tural control and is the basis for progressing to more dy-
namic tasks such as walking, stair climbing and squatting. 
Balance requires sensory integration from multiple sys-
tems, the most pertinent being the somatosensory, vestibu-
lar, and visual systems.90 Multi-system integration for bal-
ance allows the nervous system to reweight or change the 
level of dependence between systems depending on the 
given context.90 After ACL injury, the use of the somatosen-
sory system is decreased due to the disruption of ligamen-
tous afferent receptors and a shift to visual dependence to 
maintain stability is noted.91 To appropriately restore bal-
ance, a clinician should aim to upweight the somatosensory 
system and decrease compensatory reweighting to the vi-
sual system.15,92,93 This can be accomplished by using vi-
sual disturbances (i.e., eyes closed, flashing glasses, etc.), 
virtual reality (i.e., smartphone or headset), and integrating 
neurocognitive challenges (Table 1) while simultaneously 
training balance and dynamic tasks. Clinicians should aim 
to increase somatosensory input using dynamically chal-
lenging positions such as squatting/lunging, and by adding 
unanticipated reactions such as squatting to an adjustable 
plinth and varying the plinth height between repetitions. 
When using movement-related interventions within the 
context of a multi-physiologic systems approach, it is para-
mount to consider the interaction between the muscu-
loskeletal and nervous systems to optimize a patient’s re-
covery. 
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Table 1. Classes of Interventions and Examples 

Class of 
Intervention 

Intervention Example Progression Ideas 

Internal Motor Task Cognitive/Skill Task 

Focus of 
Attention 

External Focus of 
Attention 
“Keep your knee 
pointed at the cone as 
you lunge forward.” 

Forward lunge → 
Multidirectional lunge 

“Perform a lunge in the direction where I am 
pointing.” 

Single 
Cognitive-
Motor 
Challenge 

Arithmetic 
“As you perform 
straight leg raises, 
count backwards from 
100 by 7s.” 

Straight leg raises → 
Straight leg raise hold/
oscillate 

“As you perform your straight leg raises, tell me the 
answer of the math problems on the flashcards I 
show you” 

Working Memory 
“As you perform your 
double leg squats, I 
want you to name all 
the professional 
basketball teams.” (or 
something patient-
centered) 

Double leg squat → Split 
squat 

“As you perform your double leg squats, I want you 
to try to name the professional basketball teams in 
alphabetical order.” 

Auditory 
“Perform a 45° lunge 
when you hear the 
command ‘ball’.” 
(simulating a basketball 
pass to an open 
teammate) 

45° lunge → Drop step 
lunge 

“Perform a 45° lunge if you hear the command 
‘ball’ (simulating a basketball pass), and a drop step 
lunge if you hear the command ‘match up’ 
(simulating defensive shuffle).” 

Cognitive-
Motor Dual 
Task with 
Decision 
Making 

Single-Step 
“When I flash the 
number 3, perform a 
forward lunge, when I 
flash the number 1 
perform a curtsy lunge.” 

Increase difficulty in 
motor task accordingly 

Use more challenging methods of arithmetic Double-Step 
“When the math 
problem sums to an 
even number jump left. 
When the math 
problem sums to an odd 
number jump right.” 

External Motor Task Cognitive/Skill Task 

Manual 
(object 
manipulation) 

Ball Toss “As you 
perform continuous 
single leg squatting, we 
will toss this ball back 
and forth.” 

Forward toss → Lateral 
toss 

“As you perform continuous single leg squatting, I 
want you to catch the yellow ball with your left 
hand and the red ball with your right hand.” 

Ball Dribble “Dribble 
the ball in place as you 
perform a single leg 
squat and hold.” 

Single leg squat → 
Alternating sides single 
leg squat 

“Dribble the ball using a front-back dribbling 
direction as you perform a single leg squat and 
hold.” 

Perturbation 
(external 
force) 

During any exercise, a 
quick manual 
perturbation to the 
patient is given. 

Providing perturbations 
toward the center of 
mass (trunk) versus 
extremities 

Moving from anticipated to unanticipated 
perturbations. 

Environment 

Clinic Environment 
Interventions might 
start in quiet treatment 
room and progress to 
busy weight area. 

Interventions in a clinic environment progressing to on-field/court 

Vision 
Interventions using 
eyes open versus closed 

Transition to a dimly lit area or use visual disturbance training systems/glasses; 
Visual tracking with numbers written on a ball – “tell me the number written on 
this tennis ball before you catch it.” 
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Class of 
Intervention 

Intervention Example Progression Ideas 

Distraction/Attention 
Gradually introduce 
relevant distractors 
according to sport 

Moving from anticipated to unanticipated distractors (sound, play calling, 
simulated game situations, etc.); Progress from stationary to moving objects (chair 
v. coach); Incorporate teammates into return to sport drills 

Object/
Opponent 
Navigation or 
Avoidance 

“While performing this 
squatting exercise, 
don’t let the tennis ball 
contact you after it’s 
thrown. You may need 
to duck or shift your 
weight.” 

“While performing this 
side-stepping exercise, 
don’t let the tennis ball 
contact you after it’s 
thrown. You may need to 
duck or shift your 
weight.” 

Therapist is positioned (hidden) behind an object 
and uses a foam roll to serve as the “opponent.” As 
the athlete moves toward the barrier, the therapist 
quickly positions the foam roll on either side of the 
barrier – requiring the athlete to move in the 
opposite direction. 

NERVOUS SYSTEM INTEGRATION WITH THE 
INTEGUMENTARY SYSTEM 

Elements of the PNS should be evaluated and integrated 
into the treatment plan post ACLR and can be directed co-
hesively while performing neurocognitive challenges as 
previously discussed. This can include range-of-motion ex-
ercises and early exercises such as quadriceps sets, long 
arc knee extensions, and standing pre-gait exercises (i.e., 
weight shifts, squats, calf raises, etc).92 Additionally, in-
terventions to normalize sensation should start early with 
scar mobility and addressing areas of decreased or altered 
sensation. Sensation can be addressed through TENS for 
pain relief during provocative activities that cause pain.94 

Such activities can be progressed through different textures 
(from a mat table to a floor) or intensity (kneeling weight in 
quadruped transitioning to tall kneeling). The afferent in-
put from the integumentary system, including tactile sen-
sation from the skin and incision healing, provides constant 
feedback that is integrated with the rest of the neurological 
input of the body. 

The integumentary system is best treated by first keeping 
the incision site clean and hydrated95 and second, maximiz-
ing healing and normalization of sensation. If the wound 
becomes infected, an uptake in inflammatory cytokines will 
increase the inflammatory state. The increased inflamma-
tory state can lead to increased PNS sensitivity, leading to 
inflammatory and neuropathic pain. Antibiotics can help 
decrease inflammation and the residual inflammation and 
neuropathic pain should be addressed.96 Creams and wraps 
can help the hypertrophy, but a scar revision surgery may be 
warranted if they are not successful.96 Another side-effect 
found with alteration of the integumentary system is the 
development of numbness along the saphenous nerve.97 

Damage to the saphenous nerve after surgery is common, 
and appropriate retraining of the somatosensory system 
during the peripheral nerve regeneration process is needed. 
In the context of a multi-physiologic systems approach, in-
terventions dual-targeting the integumentary system and 
nervous system impairments are warranted. 

NERVOUS SYSTEM INTEGRATION WITH THE 
CARDIOPULMONARY SYSTEM 

The PNS and CNS are extremely metabolically active tis-
sues. The human nervous system accounts for two to three 

percent of an individual’s total body mass, yet 20-25 per-
cent of the available oxygen circulating in the bloodstream 
is consumed by the nervous system.98 Aerobic exercise has 
been shown to have multiple effects on the brain and neu-
rocognition. Evidence supports the link between aerobic ac-
tivity and improved cognition in older populations with99 

and without cognitive impairment.100 Even in younger pop-
ulations (ages 20-67) without cognitive impairment, im-
proved executive function and increased cortical thickness 
were found after participating in a six-month, four times 
per week aerobic training regimine.101 Acute bouts of mod-
erate intensity exercise also appear to promote improved 
cognitive processing speed.102 Therefore as an athlete re-
covers from ACLR, the importance of cardiovascular exer-
cise for overall health, returning to prior level of function, 
and impact on cognitive function should be appreciated. 

Integrating neurocognitive training and cardiopul-
monary conditioning can begin as soon as the wound is 
healed, and range of motion is adequate for the task (such 
as aquatic therapy, swimming, and stationary biking).52 

When implementing neurocognitive training with car-
diopulmonary tasks, one consideration is not just the phys-
ical retraining of the cardiopulmonary system but the psy-
chological aspects of being able to break through mental/
emotional barriers. 

As the athlete progresses to RTS tasks, biomechanics, 
neurocognitive training, psychological readiness, and car-
diopulmonary conditioning all converge.103 If any of these 
factors have not been addressed prior to RTS tasks, they will 
likely hinder an athlete’s ability to return to full activity 
safely.104 Repetitive tasks such as walking, biking, and jog-
ging should be seen as opportunities for neuromuscular 
retraining and neurocognitive training. As running, jump-
ing, and cutting tasks are added, psychological readiness 
and neurocognitive training should progress to more com-
plex neurocognitive problem-solving and increased speed 
and power once strength, form, and psychological readiness 
goals have been met.92 Prior to RTS, cardiopulmonary con-
ditioning should be assessed, using speed and endurance 
tests, as well as resting heart rate and VO2max recovery 
to evaluate cardiopulmonary recovery prior to progres-
sions.104 The interplay between the cardiopulmonary and 
nervous systems are strong contributors to physical func-
tion after ACLR. 
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PAIN & PSYCHOSOCIAL CONSIDERATIONS 

A comprehensive approach to rehabilitation after ACLR 
demonstrates a critical need for clinician mindfulness to 
treat each patient as a whole, including acknowledging psy-
chosocial factors such as patient’s changing their “sense of 
self” or athletic identity. Some patients may no longer view 
themselves as an “indestructible high performing athlete,” 
but as someone who can get injured and may not return 
to the same level of performance. When an individual has 
doubts and suffers loss, fear and anxiety are natural psycho-
logical responses.105,106 Rebuilding a sense of safety and 
security is vital within the rehabilitation process to over-
come those fears. Evidence demonstrates that lower levels 
of fear and higher self-efficacy scores are associated with 
better resolution of knee impairments.107 Discussions over 
normal psychological states of fear and worry need to occur 
within the context of using psychological informed prac-
tices throughout recovery. The use of graded exposure with 
exercise and activities has been shown to help reduce fear 
and improve functional gains.108–110 

CONCLUSION 

In alignment with a multi-physiologic systems approach 
to human movement, clinicians should aim to comprehen-
sively treat patients through a multi-system lens. The ner-
vous system is vastly integrated with the other system com-
ponents essential for promoting optimal patient function 
after ACLR. Incorporating intervention strategies that tar-
get the nervous system, address the psychosocial aspects of 
rehabilitation, and incorporate an integrated systems ap-
proach are needed throughout the continuum of recovery. 
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